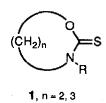
Chiral 2-Thioxotetrahydro-1,3-0,N-heterocycles from Carbohydrates

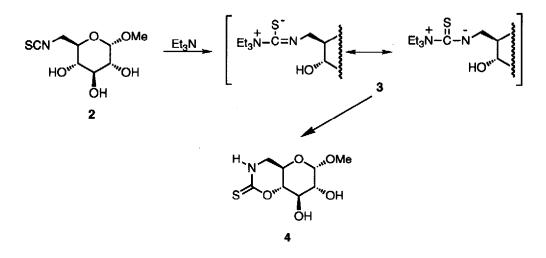

José M. García Fernández, Carmen Ortiz Mellet and José Fuentes*

Departamento de Química Orgánica, Facultad de Química, Universidad de Sevilla, Apartado de Correos No. 553, E-41071 Sevilla, Spain.

Key Words: Oxazolidine-2-thiones: 2-thioxotetrahydro-1,3-oxazines; sugar isothiocyanates; cyclic thiocarbamates; carbohydrates as chiral templates

Abstract: Triethylamine-induced cyclization of methyl 6-desoxy-6-isothiocyanato- α -D-glucopyranoside (2) yields the fused 2-thioxotetrahydro-1,3-oxazine derivative 4. In contrast, 6-deoxy-1,2:3,4-di-O-isopropyliden-6-isothiocyanato- α -D-galactopyranose (5) undergoes, on deprotection, spontaneous cyclization involving the OH-5 of the galactofuranose tautomer to give the oxazolidine-2-thione derivative 7. The chirality of the resulting substituted heterocycles is determined by the sugar configuration.

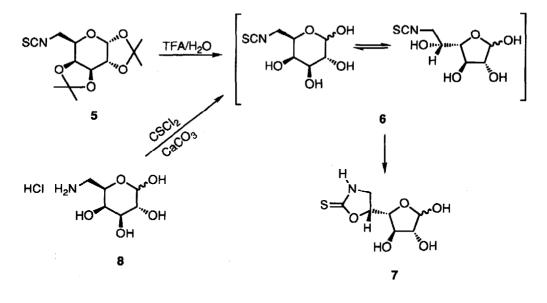
1,3-Oxazolidine-2-thiones (1, n = 2) are of interest because some of the naturally occurring members¹ show antithyroid activity. The six-membered analogues tetrahydro-1,3-oxazine-2-thiones (1, n = 3) have shown antidepressant, anticholinergic, analgesic, and antiinflammatory activity². Furthermore, starting from 2-thioxo-1,3-heterocycles (1, R = H), a number of variously fused heterocycles can be prepared, which are interesting from both chemical and pharmacological points of view^{3,4,5}.



A few examples of the preparation of fused- and spiro-oxazolidine-2-thiones from sugars have been reported. The procedures imply either the reaction of a free sugar with thiocyanic acid^{6,7} or the reaction of an aminosugar with carbon disulphide⁸. In both cases the anomeric hydroxyl group is involved in the heterocyclic ring closure. Different tautomers can thus react with a corresponding loss of selectivity.

It has been reported^{9,10} that β - and γ -hydroxyisothiocyanates undergo spontaneous or basedinduced cyclization to give the title compounds. Unprotected 6-deoxy-6-isothiocyanato aldoses fulfil this structural requirement and now we have explored its use as chiral templates in the synthesis of 2thioxotetrahydro-1,3-O, *N*-heterocycles. Hitherto, only one example of 6-deoxy-6-isothiocyanato has been reported in the literature¹¹, namely 6-deoxy-6-isothiocyanato-D-glucose, and a bicyclic sevenmembered thiocarbamate has been detected as a by-product in the reaction of a partially protected galactopyranosyl isothiocyanate with tri-*n*-butyltin hydride¹².

Starting from methyl α -D-glucopyranoside and 1,2:3,4-di-O-isopropyliden- α -D-galactopyranose, we have prepared the corresponding 6-deoxyisothiocyanates 2^{13} and 5^{13} , *via* 6-deoxy-6-iodo, 6-azido-6-deoxy, and 6-amino-6-deoxy derivatives, by reaction of the latter with thiophosgene¹⁴ (85-90% yield).


The gluco-isothiocyanate 2 is a crystalline, stable compound. No reaction was observed even after heating at 125° in DMF for 2 h. However, it readily underwent intramolecular cyclization on addition of a catalytic amount of Et₃N, to give the bicyclic (5R,6R)-*trans* -2-thioxotetrahydro-1,3-oxazine derivative 4^{13} in 78% yield. The reaction takes place through the complex (3) between the amine and the isothiocyanate¹², which undergoes nucleophilic displacement by the γ -located OH-4 of the glucopyranose ring (Scheme 1).

In contrast, on deprotection, the galacto-isothiocyanate 5^{13} experienced spontaneous cyclization to yield the (5R)-1,3-oxazolidine-2-thione derivative 7^{13} in 73% yield. The reaction in this case involves the β -located OH-5 of the galactofuranose tautomer of 6. The 13 C-NMR data 13 of 7 confirmed the furanoid structure, showing an α : β ratio ~1:2. The transient isothiocyanate 6 could be detected by IR spectroscopy (NCS band at 2133 cm⁻¹) but not isolated. Compound 7 was also obtained by reaction of unprotected 6-amino-6-deoxy-D-galactose hydrochloride (8) with thiophosgene (Scheme 2). This behaviour differs from that reported¹¹ for the stable gluco-

isothiocyanate analogue, probably due to the higher proportion of the furanoid form in the tautomeric equilibrium of reducing galactose derivatives¹⁵.

An isothiocyanate has also been postulated as intermediate in the reaction of 1-amino-1deoxy-D-fructose with carbon disulphide⁸. The formation in that case of a spiro- oxazolidine-2-thione and not a tetrahydro-1,3-oxazine derivative agrees with our present result.

In conclusion, our results show that 6-deoxy-6-isothiocyanto aldoses can be used as chiral templates in the synthesis of optically pure substituted 2-thioxotetrahydro-1,3-O,N -heterocycles. The extension of this reaction to other sugar configurations as well as some transformations on the resulting heterocyclic derivatives are currently under study in our laboratory.

Acknowledgements

We thank the Dirección General de Investigación Científica y Técnica for financial support (grant number PB 88/0268), and the Ministerio de Educación y Ciencia of Spain for a postdoctoral fellowship to J.M.G.F.

References and Notes

- Kjaer, A. Organic Sulfur Compounds; Kharasch, N. Ed.; Pergamon Press: Oxford 1961; Vol. 1, p. 418.
- Raynaud, G.; Gouret, C.; Bouniol, M.J.; Mazadier, M.; Anton, G., Eur. J. Med. Chem.-Chim. Ther. 1976, 11, 75-80.

- Belgodere, E.; Bossio, R.; Cencioni, R.; Marcaccini, S.; Pepino, R., J. Heterocyclic Chem. 1984, 21, 1241.
- 4. Kottke, K.; Kühmstedt, H., Pharmazie 1984, 39, 868-869.
- Lantos, I.; Bender, P.E.; Razgaitis, K.A.; Sutton, B.M.; DiMartino, M.J.; Griswold, D.E.; Walz, D.T., J. Med. Chem. 1984, 27, 72-75.
- 6. Jochims, J.C.; Seeliger, A.; Taigel, G., Chem. Ber., 1967, 100, 845-854.
- 7. Grouiller, A.; Mackenzie, G.; Najib, B.; Shaw, G.; Ewing, D., J. Chem. Soc., Chem. Commun., 1988, 671-672.
- Fernández-Bolaños, J.; Blasco López, A.; Fuentes Mota, J., Carbohydr. Res., 1990, 199, 239-242.
- Eckstein, Z.; Urbanski, T., Adv. Heterocycl. Chem. 1963, 2, 311-342; Ibid. 1978, 23, 1-53.
- Drobnica, L.; Kristián, P.; Augustín, J.: The chemistry of the -NCS group. In The Chemistry of Cyanates and their Thio Derivatives; Patai, S. Ed.; John Wiley & Sons, Inc.: Chichester, 1977; pp. 1116-1121.
- 11. Ramjeesingh, M.; Kahlenberg, A., Can. J. Chem., 1977, 55, 3717-3720.
- 12. Avalos, M.; Babiano, R.; García-Verdugo, C.; Jiménez, J.L.; Palacios, J.C., Tetrahedron Lett., 1990, 17, 2467-2470.
- 13. Data for 2: M.p. 52-53° (from ether), $[\alpha]_D^{20}$ +117° (c 1, acetone); IR 2101 cm⁻¹ (NCS); ¹³C-

NMR data (50.3 MHz, acetone-d₆): 131.1 (NCS). Data for 4: M.p. 173-174° (from ethanolether), $[\alpha]_D^{20}$ +16° (*c* 1.2, methanol); IR 1555 cm⁻¹ (NH); ¹³C-NMR data (50.3 MHz, CD₃OD): 188.1 (CS). Data for 5: $[\alpha]_D^{20}$ -83° (*c* 1.4, chloroform); IR 2101 cm⁻¹ (NCS); ¹³C-NMR data (50.3 MHz, CDCl₃): 132.4 (NCS). Data for 7: $[\alpha]_D^{20}$ -69° (*c* 1.2, water); IR 1545 cm⁻¹ (NH); ¹³C-NMR data (50.3 MHz, CD₃OD): 190.5, 190.4 (CS), 103.1 (C-1 β-Galf), 97.2 (C-1 α-Galf). Compounds 2, 4, 5, and 7 gave satisfactory microanalysis (C, H, N, S).

- The thiophosgene reaction was performed in water-acetone (2) or chloroform (5). For a typical procedure see, for instance: Fuentes Mota, J.; García Fernández, J.M.; Ortiz Mellet, C.; Pradera Adrián, M.A.; Babiano Caballero, R., *Carbohydr. Res.* 1989, 188, 35-44.
- 15. Angyal, S.J., Adv. Carbohydr. Chem . Biochem., 1984, 42, 15-68.

(Received in UK 27 April 1992)